Low-voltage FM IF Amplifier

Description

The CXA1884N is designed for FM communication devices. They incorporate a paging system, mixer, IF limiter, FM detector, operational amplifier, comparator, and others.

Features

- Low operating voltage 1.0 to 4.0 V
- Low power consumption 2 mA at 1.5 V
- Built-in power source voltage monitor

Applications

IF Amplifier for Paging System Receiver

Structure

Bipolar silicon monolithic IC

Absolute Maximum Ratings $\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)$			
- Supply voltage	Vcc	7	
- Operating temperature	Topr	-20 to +75	${ }^{\circ} \mathrm{C}$
- Storage temperature	Tstg	-65 to +150	${ }^{\circ} \mathrm{C}$

Recommended Operating Conditions

Supply voltage Vcc 1.0 to 4.0 V

Block Diagram and Pin Configuration

Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits.

Pin Description

Pin No.	Symbol	Equivalent circuit	Description
1 2	OSC1 OSC2		Those pins are connected to the external parts of an oscillating circuit. The oscillator is an internally-biased Colpitts type with the collector, base, and emitter connections at Vcc, pins 1 and 2 respectively.
3	MIX OUT		Mixer output pin. Connect a 455 kHz ceramic filter between this pin and the IF IN pin.
4	Vcc		Vcc pin.
5	IF IN		Input pin for the IF limiter amplifier.
6	IF P1		Connection pin of the bypass capacitor for the IF limiter amplifier. Connect a capacitor of about $0.047 \mu \mathrm{~F}$ between this pin and ground (or Vcc).
7	IF P2		Connection pin of the bypass capacitor for the IF limiter amplifier. Connect a capacitor of about $0.047 \mu \mathrm{~F}$ between this pin and ground (or Vcc).
8	QD		Connected to a quadrature detector phase shifter.

Pin No.	Symbol	Equivalent circuit	Description
9	DET OUT		Recovered signal output.
10	A1 IN		Input pin of inverting OP amplifier A1.
11	A1 OUT	(11)	Output pin of OP amplifier A1.
12	A2 IN	(12)	Input pin of OP amplifier A2.
13	$\begin{aligned} & \text { COMP } \\ & \text { IN } \end{aligned}$		Input pin of the comparator. This pin is internally connected to the output of OP amplifier A2.

Pin No.	Symbol	Equivalent circuit	Description
14	NRZ	(14)	NRZ (Non Return Zero) output pin.
15	SENSE		Voltage control pin for external bias supply.
16	VB OUT		Supplies bias voltage to external circuit transistors and others.
17	$\overline{\text { BSV }}$	(17)	Reduces IC power consumption. Lowering pin voltage beiow 0.35 V stops IC operation.
18	LVA	(18)	Output pin for Low Voltage Alarm (LVA). The pin turns to high impedance when power voltage drops below 1.05 V .
19	GND		Ground pin.
20	RF IN		Mixer input pin.

Electrical Characteristics

$\left(\mathrm{Vcc}=1.5 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{fs}=21.7 \mathrm{MHz}, \mathrm{fmod}=256 \mathrm{~Hz}, \mathrm{fdiv}=2.3 \mathrm{kHz}, \mathrm{AMmOD}=30 \%\right)$

Item	Symbol	Condition	Min.	Typ.	Max.	Unit
Power consumption (during operation)	Icc	Test circuit 1	1.2	2.0	2.6	mA
Power consumption (during battery saving)	Iccs	Test circuit 1 $V_{I}=0.3 \mathrm{~V}$	-	-	20	$\mu \mathrm{A}$
Input for -3dB Limiting	VIN(LIM)	Test circuit 3	-	7	-	dB μ
AM rejection ratio	AMRR	$\mathrm{V} \operatorname{IN}=60 \mathrm{~dB} \mu$ Test circuit 3	25	-	-	dB
OP amplifier input bias current	Ibias	Test circuit 2	-	30	100	nA
OP amplifier open loop gain	Av	Test ciTcuit 4	45	60	-	dB
OP amplifier output voltage amplitude	Vo	Test circuit 5	0.25	-	-	Vp-p
Comparator hysteresis width	VTw	Test circuit 6	30	40	50	mV
NRZ* output leak current	ILNRZ	Test circuit 7	-	-	5.0	$\mu \mathrm{A}$
NRZ* saturation voltage	Vsatnrz	$\text { Isink }=200 \mu \mathrm{~A}$ Test circuit 8	-	-	0.4	V
VB output current	lout	$\mathrm{V}_{\mathrm{B}}=0.9 \mathrm{~V}$	0.1	-	-	mA
VB output voltage	Vbout	Test circuit 9	0.95	-	-	V
Sense voltage	Vsen	Test circuit 2	85	100	115	mV
LVA threshold voltage	VPML	Test circuit 10	1.00	1.05	1.10	V
LVA hysteresis width	Vpmit	VPMH - VpmL	35	50	70	mV
LVA output leak current	Illva	Test circuit 7	-	-	5.0	$\mu \mathrm{A}$
LVA saturation voltage	Vsatlva	Test circuit 8	-	-	0.4	V
Recovered signal voltage	Vdet	Test circuit 3	10	-	-	mVrms
BSV high level	Vthbsv		0.95	-	-	V
BSV low level	Vtlbsv		-	-	0.35	V

[^0]
Electrical Characteristics Test Circuit

Test circuit 1

Test circuit 3

Test circuit 2

Test circuit 5

$-6-$

Test circuit 7

Test circuit 9

Test Method

Input for - 3 dB Limiting Vin (Lim)

Use test circuit 3 . Apply a signal with the following characteristics to SIG IN.
Signal frequency: fs $=21.7 \mathrm{MHz} \quad$ Modulation frequency: fmod $=256 \mathrm{~Hz}$
Frequency deviation: fdiv $=2.3 \mathrm{kHz}$ Signal level: $\mathrm{VL}=40 \mathrm{~dB} \mu$
Here, the value of $V_{A C}$ is specified as $V_{A C 1}$. Next, the signal level V_{L} is changed to $19 \mathrm{~dB} \mu$ and $V_{A C}$ value is hence specified as VAcz.

$$
20 \log \frac{V_{A C 1}}{V_{A C 2}}<3 d B
$$

AM rejection ratio (AMRR)

Use test circuit 3. Apply a signal with the following characteristics to SIG IN.
Signal frequency: fs $=21.7 \mathrm{MHz} \quad$ Modulation frequency: $\mathrm{fmOD}=256 \mathrm{~Hz}$
Frequency deviation: folv $=2.3 \mathrm{kHz} \quad$ Signal level: $\mathrm{VL}=40 \mathrm{~dB} \mu$
Here, the value of VAC is specified as VAC1. Next, AM is modified to:
Modulation ratio: $\mathrm{AMMOD}=30 \% \quad$ Modulation frequency: $\mathrm{fmOD}=256 \mathrm{~Hz}$
and the $V_{A C}$ value is hence specified as $V_{A C 2}$.

$$
A M R R=20 \log \frac{V_{A C 1}}{V_{A C 2}}>25 d B
$$

Recovered signal voltage Vdet

Use test circuit 3 . Apply a signal with the following characteristics to SIG IN.
Signal frequency: fs $=21.7 \mathrm{MHz} \quad$ Modulation frequency: $\mathrm{fmOD}=256 \mathrm{~Hz}$
Frequency deviation: folv $=2.3 \mathrm{kHz} \quad$ Signal level: $\mathrm{VL}=50 \mathrm{~dB} \mu$
Here, the value of the Pin 9 output voltage is expressed as Vdet.

OP amplifier output voltage amplitude Vo

Use test circuit 5. If output voltage V is expressed as V_{1} when V in is 0.1 V , and as V 2 when V in is 0.3 V , it follows that:

$$
V_{0}=V_{1}-V_{2}
$$

Comparator hysteresis width VTw

Use test circuit 6 . Vary Vin between 0.1 to 0.3 V .
Specify Vin voltage, as V_{1} when (C) voltage changes from low to high.
Similarly, specify Vin voltage as V_{2}, when (C) voltage changes from high to low.
Therefore: $\mathrm{VHY} \quad \mathrm{V}_{\mathrm{TW}}=\mathrm{V}_{1}-\mathrm{V}_{2}$

LVA threshold voltage Vpml and recovery voltage Vрмн

Use test circuit 10. Vary power voltage Vcc from 1.3 to 0.95 V .
Specify Vcc as VpmL, when (C) voltage changes from low to high.
Similarly, specify Vcc as Vpмн, when (C) voltage changes from high to low.

Design Reference Values
$\left(\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{Vcc}=1.4 \mathrm{~V}\right)$

Item	Symbol	Condition	Min.	Typ.	Max.	Unit
Mixer input resistance	RIN (MIX)		1.3	1.6	1.9	k Ω
Mixer input capacity	CIN (MIX)		-	4.0	-	pF
Mixer output resistance	Rout (MIX)		1.44	1.8	2.16	k Ω
IF input resistance	RIN (IF)		1.44	1.8	2.16	k Ω
IF gain stability	GN(IF)	$\mathrm{Ta}=-20$ to $+60^{\circ} \mathrm{C}$	-	± 6	-	dB
Detector output resistance	Rout (QD)		1.28	1.6	2.0	k Ω
OP amplifier max. input voltage	Vinmax		-	-	0.39	V
OP amplifier min. input voltage	Vinmin		0.05	-	-	V
Comparator max. input voltage	Vinmaxcomp		-	-	0.39	V
Comparator min. input voltage	Vinmincomp		0.05	-	-	V
OP amplifier off-set voltage	Vofs		-	-	3	mV

Application Circuit

Application circuits shown are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits or for any infringement of third party patent and other right due to same.

1) Supply

This IC incorporates a regulation and is designed to operate steadily on a wide range of supply voltage from 1.0 to 4.0 V .

Decoupling on the wiring to the supply pin (Pin 4) should be done as close to the pin as possible.

2) Oscillation input

Oscillation input method
(a) Using Pins 1 and 2, input self-excited oscillation signals through the composition of a Colpitts type crystal oscillating circuit.
(b) Input local oscillation signals to Pin 1 directly.

Fig. 1

3) Mixer

This IC's mixer is of the double balance type. Pin 24 is the input pin. Input through a suitable alignment circuit. Input impedance is at $1.6 \mathrm{k} \Omega$. The mixer output features a built-in $1.6 \mathrm{k} \Omega$ load resistance at Pin 3 .

4) IF filter

The filter to be connected between this IC's mixer and the IF limiter should have the following specifications.

I/O impedance: $1.6 \mathrm{k} \Omega \pm 10 \%$
Band width: Use according to application

5) IF limiter

The IF limiter of this IC features a gain of about 100 dB . To this effect, the following points should be considered for the wiring connecting IF limiter input pin (Pin 5) and decoupling capacitor pins (Pins 6 and 7).
(a) Wiring to mixer output (Pin 3) and IF limiter input (Pin 5) should be as short and as far apart as possible to avoid neutral interference.
(b) Connect a decoupling capacitor to IF limiter IF P1 (Pin 6) and IF P2 (Pin 7).

Here the decoupling capacitor should be positioned as close as possible to each pin and the wiring be as short as can be.
(c) As IF limiter output shows at QD (Pin 8), keep the wiring connected to QD pin R, L, C and the ceramic discriminator as short as possible. Interference to the mixer output, IF limiter input and others must be kept to a minimum.

Fig. 2

6) Detector

The detector is of the quadrature type. To phase shift, either R, L, C resonance circuit or the ceramic discriminator is connected to Pin 8.
The phase capacitor of the quadrature detector is built-in. FM (FSK) signals demodulated by this detector have their high frequency components dropped by the LPF formed inside from CRs, to be output at DET OUT (Pin 9). DET OUT output impedance is about $3 \mathrm{k} \Omega$.
For the CXA1884N ceramic discriminator, CDB 455 C3 (Murata Production) is recommended.

(a) Coil

(b) Ceramic discriminator

Fig. 3

7) OP AMP, NRZ OUT

This IC has 2 built-in operation amplifiers.
One of these operation amplifiers is connected inside the IC to NRZ comparator.

Fig. 4

Making use of these operation amplifiers an LPF or the sort is made up to eliminate noise during signal demodulation and input to the following NRZ comparator.
NRZ comparator molds the waveform of input signals to output them as square waves. NRZ comparator output is an open collector.
Accordingly as CPU is a CMOS, in case the supply voltage differs, by following the method indicated in Fig. 5 direct interfacing becomes possible.

Fig. 5

8) VB SENSE, VB OUT

This controls the base bias of the external transistor. Pin 16 VB OUT can be used as the previous amplifier 1st mixer bias.

9) LVA OUT

When supply voltage turns low this pin turns to High (Open). Output is an open collector, and similarly as NRX OUT, can directly drive CMOS.
This LVA setting voltage is at $1.05 \mathrm{~V} \pm 50 \mathrm{mV}$ with hysterisis versus supply voltage.
Hysterisis width is at $50 \mathrm{mV} \pm 10 \mathrm{mV}$.

10) $\overline{B S V}$

By turning this pin to low, this IC's operation can be stopped. This pin can also be directly connected to CMOS.
Consumption current with $\overline{\mathrm{BSV}}$ is $20 \mu \mathrm{~A}$ (at 1.5 V) and below.

Fig. 6

Mixer input signal vs. Output characteristics Input sensitivity

4th LP Butterworth cascade MFB constant using OP1 and OP2 inside CXA1884N

fmod	256 Hz
fc (-3dB)	400 Hz
A1 Gain	1
A2 Gain	4
R1	$47 \mathrm{k} \Omega$
R2	$47 \mathrm{k} \Omega$
R3	$22 \mathrm{k} \Omega$
R4	$47 \mathrm{k} \Omega$
R5	$180 \mathrm{k} \Omega$
R6	$33 \mathrm{k} \Omega$
C1	$0.012 \mu \mathrm{~F}$
C2	680 pF
C3	$0.015 \mu \mathrm{~F}$
C4	1200 pF

Logical input level vs. Mixer conversion

Input frequency vs. Conversion gain

20PIN SSOP (PLASTIC)

DETAIL A
NOTE: Dimension "*" does not include mold protrusion.
PACKAGE STRUCTURE

SONY CODE	SSOP-20P-L01
EIAJ CODE	SSOP020-P-0044
JEDEC CODE	

PACKAGE MATERIAL	EPOXY RESIN SOLDER / PALLADIUM PLATING
LEAD TREATMENT	PLCOPPER ALLOY
LEAD MATERIAL	0.1 g
PACKAGE MASS	

NOTE : PALLADIUM PLATING

This product uses S-PdPPF (Sony Spec.-Palladium Pre-Plated Lead Frame).

[^0]: * NRZ: Non Return Zero

